A Parameters Calibration Method in Simulated Complex Traffic Network

نویسندگان

  • Hu Xinghua
  • Zhang Yu
چکیده

Traffic simulation models have been extensively used because of their ability to model the dynamic stochastic nature of transportation systems. Parameter calibration is very complex and does not give optimal results easily. Besides, it is also time-consuming especially for large and complex networks. Initially, the procedure of traffic micro-simulation parameter calibration was put forward. A Vehicle Intelligent Simulation Software Model (VISSIM) models were selected for parameter calibration in complex-network, and, the role of Simultaneous Perturbation Genetic Algorithm (SPGA) was examined in the optimization of component. Moreover an automatic calibration methodology for micro-simulation models was developed in order to select the best parameter set based on the observed Intelligent Transportation Systems (ITS) data which proved effective for different networks. Finally, the methodology was applied to calibrate the Beijing city VISSIM models, followed by the comparison of convergence rate of Genetic Algorithm (GA), Simultaneous Perturbation Stochastic Approximation (SPSA) and SPGA algorithm. The results show that the SPGA was effective and had good performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Off-line Calibration of Dynamic Traffic Assignment Models by

Advances in Intelligent Transportation Systems (ITS) have resulted in the deployment of surveillance systems that automatically collect and store extensive network-wide traffic data. Dynamic Traffic Assignment (DTA) models have also been developed for a variety of dynamic traffic management applications. Such models are designed to estimate and predict the evolution of congestion through detail...

متن کامل

Calibration of microsimulation traffic model using neural network approach

This paper presents the results of research on the applicability of neural networks in the process of computer calibration of a microsimulation traffic model. VISSIM microsimulation model is used for calibration done at the example of roundabouts in an urban area. The calibration method is based on the prediction of a neural network for one traffic indicator, i.e. for the traveling time between...

متن کامل

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

Network Parameters Evaluation in Vehicular Ad-hoc Network (VANET) Routing Protocols for Efficient Message Delivery in City Environment

Abstract- Efficient message delivery in city environment is required to ensure driver’s safety and passenger’s comfortability. In cities of developed nations, routing of data in vehicular Ad hoc Network (VANET) faces many challenges such as radio obstacles, mobility constraints and uneven nodes distribution. These factors primarily makes communication between vehicles complex. To overcome and t...

متن کامل

A simulated annealing approach to solve the network design of one-way streets: case of Shiraz network

This study is devoted to the formulation of the network design problem of one-way streets and the application of simulated annealing (SA) algorithm to solve this problem for a large real network. It discusses some points of views on one-way street networks, the objective function used for design, the way in which design constraints may be considered, and the traffic problems concerning one-way ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016